寒武紀大爆發為何發生?是因為氧、掠食者亦或是地磁反轉無情的捉弄? 原載於泛科學
由化石記錄可知,如今千奇百怪的動物,大多數祖先最早都可以追溯到寒武紀(Cambrian),這個距今約4.8到5.4億年前的地質時期。比起已經出現30億年以上的生命,5億年很短,但相較只有20萬年歷史的智人,5億年又長的無法想像。
寒武紀大爆發想像圖,這是個多彩多姿的生命新世代。(取自這裡)
海洋、大地、生命,跟現在截然不同的遠古年代
許多人知道寒武紀,是因為「寒武紀大爆發(Cambrian Explosion)」,也就是寒武紀時冒出來,大批前所未見的奇形怪狀動物。事實上,欣欣向榮的新生命不只眷顧寒武紀,開始於6.35億年前,更早前的埃迪卡拉紀(Ediacaran)也出現過許多新種動物,只是這批動物絕大部分都滅絕了,被寒武紀繼之而起的新世代所取代。
為什麼?為什麼生命在30幾億年前就已經誕生,卻要經過20多億年,等到埃迪卡拉紀才出現構造比較複雜的動物?為什麼?為什麼埃迪卡拉紀的動物又一夕間大量消失,相對迅速地被後輩取代?為什麼?為什麼寒武紀的動物與之前如此不同?
這些問題至今都沒有確定的答案,畢竟我們對那個悠遠古老,大地與海洋都跟現代截然不同的年代,所知相當有限,目前大致只能確定,那時的動物都是水生,尚未登陸。埃迪卡拉紀的動物相對簡單,沒有眼睛、肢體等構造,宅在海床上不會動;寒武紀的動物比較複雜,出現眼睛、長腳、硬殼、還會游泳。
過去一派看法認為,寒武紀大爆發的關鍵在演化上的創新,例如視覺;另一派則主張生命複雜度與氧濃度息息相關,等到寒武紀時,氧濃度才上升到足以支撐複雜動物,因此寒武紀大爆發是氧濃度增加的結果[1]。最近研究卻發現,埃迪卡拉紀跟寒武紀交界時期的氧濃度,其實沒什麼差異,無法直接用氧濃度增加,解釋生命形態的轉變[2]。
圖上半部分是歷史上海洋中氧的濃度。長期趨勢看來,濃度幾億年來一直都很低,但在某些時候會突然上升一下,然後又降回去。埃迪卡拉紀末期的劇烈上升,可能與埃迪卡拉紀大滅絕,以及寒武紀大爆發有關。圖下半部分是兩個時期的生物形態。埃迪卡拉紀動物普遍比較大隻,但構造簡單,很宅不會跑;寒武紀動物演化出更複雜的眼睛、附肢、各式身體組織,會跑來跑去,這些特徵一路流傳到今天。(取自ref1)
插播一個有趣的相關問題:最早的動物何時誕生?已知最古早的動物化石距今5.8億年,然而分子演化估計的年代卻是7到8億年前,也許線索就藏在氧濃度中。8億年前的氧濃度是現在的2到3%,應該已足以讓最初構造極簡的動物誕生,但要等到埃迪卡拉紀時,氧濃度才高到足以出現更複雜的動物,形成化石保存下來。
掠食刺激寒武紀大爆發?
回到寒武紀大爆發,有人認為掠食者才是關鍵。稍早研究認為,氧濃度低於0.5%只能支撐極簡單的生態系,動物只有微生物能吃;略升為0.5到3%, 動物種類會變多,但還是只能吃微生物;然而氧濃度升為3到10%後,以別的動物為食的動物,也就是掠食者就能出現,更加複雜的食物網於是誕生[3]。
埃迪卡拉紀的典型動物,身體柔嫩,欠缺防禦,又不會跑,簡直是生來給掠食者享用的大餐,競爭失敗的軟弱動物最終被淘汰,發展出有效防禦措施的動物則隨之興起,掠食者刺激了生物多樣性誕生,造成寒武紀大爆發。
抵擋掠食者的方法之一,是靠硬殼保護肉體。埃迪卡拉紀末期時至少出現3種動物,配備礦物化的身體構造,其中一種叫作Cloudina,科學家在它的鈣質外殼上觀察到洞,可能是曾被掠食者攻擊的痕跡[4]。耗費能量的外骨骼不可能無緣無故誕生,有學者認為為了抵擋掠食者演化出殼,是最合理的解釋。
有殼的Cloudina想像圖。(取自wiki)
除了變硬以外,還有別的辦法避免被吃掉,像是更靈敏的感官、行為改變。埃迪卡拉紀的動物住在海床的微生物層(microbial mat)上,算是活在二維的平面世界,但一旦動物能挖穿微生物層,鑽入海床躲避掠食者(氧也能跟著接觸到底下的沉積層),或是游泳離開海床,2D就升級為 3D,從此成為多彩多姿的立體世界。
輻射造成寒武紀大爆發?
以上解釋寒武紀大爆發的說法看似合理,但最近有另一個假說提出[5]。新研究報告,5.5億年前,也就是埃迪卡拉紀末期,地球歷經比現在頻繁20倍的地磁反轉,這波劇烈的地磁變化,也許導致那時損失高達20到40%的臭氧層,讓穿透的紫外線輻射大增[6]。
這麼多啊,死亡帶走了這麼多啊!埃迪卡拉紀的柔嫩動物們,是否因為受不了而大量輻射而滅絕?(取自ref5)
在狠毒的陽光下,沒有防禦、不會移動的軟弱動物將紛紛陣亡,能防禦輻射傷害的動物才能生存。用硬殼遮蔽肉體、長出眼睛偵測光線、從海床往下挖掘尋求庇護,都可能是動物演化而來抵抗輻射。這個假說聽來驚人,不過基本上跟前一個類似,只是把「掠食者」的角色換成「紫外線」。
驅使寒武紀大爆發的關鍵為何,目前仍沒有答案。氧濃度與掠食者的假說證據較多,看來有希望,但仍不足夠;紫外線假說則疑點重重,畢竟地磁反轉對輻射強度的影響,以及輻射對生物遺傳的影響,都還有許多未知之處,要證實這套論點,比前一個假說需要更多後續研究。
1. What sparked the Cambrian explosion?
2. Sperling, E. A., Wolock, C. J., Morgan, A. S., Gill, B. C., Kunzmann, M., Halverson, G. P., … & Johnston, D. T. (2015). Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature, 523(7561), 451-454.
3. Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., & Knoll, A. H. (2013). Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences, 110(33), 13446-13451.
4. Bengtson, S., & Zhao, Y. (1992). Predatorial borings in late Precambrian mineralized exoskeletons. Science(Washington), 257(5068), 367-369.
5. Hyperactive magnetic field may have led to one of Earth’s major extinctions
6. Meert, J. G., Levashova, N. M., Bazhenov, M. L., & Landing, E. (2016). Rapid changes of magnetic Field polarity in the late Ediacaran: Linking the Cambrian evolutionary radiation and increased UV-B radiation. Gondwana Research.
歡迎光臨粉絲團一起討論:盲眼的尼安德塔石器匠
留言列表